
1

SRE Patterns & Anti-Patterns

Name: Shivagami Gugan

DevOps Institute Ambassador

22

SRE Patterns and Anti-Patterns

Hope you take away from this presentation:

- More clarity on SRE patterns
- Few traps to avoid along the journey

Agenda

Shivagami Gugan

Technology Transformation Leader, Aviation

Technologist, CDTO delivering Digital initiatives from

the Middle East, Head of Engineering, Site Reliability

Engineering & Cloud

SRE is about making Machines work for Humans

Old World

a machine, called a pager, wakes you up at 3:00 in the morning because some

other machine is having a hard time.

In this world, you work for the computers.

The SRE World

some system you’re responsible for is having a problem, it mitigates itself, and

then it writes a bunch of information out for you to debug the next morning.

This’s a world where the machines work for you.

SRE is a world where the machines work for you. …

“That’s the difference between staring at a monitor for alerts, versus trying to

write software or implement systems that fix themselves.”

Metrics for Success

On-demand

↑

Once every 1-6
months

< 1 day

↑

1-6 months

< 1 hour

↑

1-4 days

Deployment
Frequency

Lead Time for
Changes

Time to Restore
Service

0-5%

↑

46-60%

Change Failure
Rate

Software delivery and operations performance correlate to business goals

SAFER. FASTER. CHEAPER. BETTER.

Deliver Business

SRE Barriers
• Reliability is everyone’s problem

• SRE is the purest form of the implementation of DevOps. SRE is about removing the silos in a Product lifecycle and
building reliability across the spectrum (design, dev, deploy, operate, etc.)

• SRE’s constantly live in the Conflation of Systems thinking and Software Engineering

• SREs constantly play the balancing act, and intelligently trade off options to create pragmatic and cost effective
decisions across the entire Product life-cycle.

Agility

Performance

Reliability

Cost

Continuum UI/UX
Operational
Excellence

Remember SREs are huge Collaborators

• SREs bring Singularity between Dev and Ops, between

Software and it’s Ecosystem, Systems Engineering and

Software Engineering

• An SRE is expected not to “run” systems but rather to

create environments and automation that will self-enable

systems to run

• They work on the entire continuum between Software

Design, Development, Testing, Deployment, Operations and

Customer Experience

Step 1: Understand Customer Expectations

Understand Customer

Expectations

Create Solution

Strategy and

Roadmap

Assess Org context

and Maturity

Transform, Inspect &

Adapt

Sustain Continuous

improvement

Step 2: Don’t Boil the Ocean
• Start small in obvious areas and scale out….
• Broad benchmarking could help …. Automate the measurements and aim to eliminate toil

Step 3a: Easier ways to Select Target areas

Source: Gartner Research Report

https://www.gartner.com/binaries/content/assets/events/keywords/ap

plications/apn30/pace-layered-applications-research-report.pdf

Probability and Impact of Service Failures

https://www.gartner.com/binaries/content/assets/events/keywords/applications/apn30/pace-layered-applications-research-report.pdf

Step 3b: Easier ways to Select Target areas

• Is Business Innovation is a Priority

• Is Technical Debt is a Priority

• Is Cloud Migration is a Priority

Cloud Migration, DevOps CI/CD Automation, Observability, Automating Ops, Dev, Deploymet are all intertwined Strategies

Selection of Target areas can be based on a combination of multitude of factors

Behavioral Skills and Culture Assessment is Super Important

Implementation Roadmap

TARGET

AREAS
ESTABLISH OPERATIONALIZE MATURE

7

Rapid SRE

Transformation

Continuous
Improvement

1

2 4
8

5 9
5

73

6

Blueprint for

SRE

Assess/ Maturity/
Roadmap

Enablement

GovernanceBest Practices

Evangelism

• Assess Business expectations,

Align with Org

goals & establish current state

• Align strategic goals to

actionable initiatives

• Identify quick wins & create an

actionable plan

• Enterprise performance

dashboards

• Stage gate governance

through pipelines

• Metrics automation

• Enterprise reference pipeline is

defined

• SRE Practices defined

• Best practices documented &

socialized

• Refine & Review

• Continuous Improvement &

Streamlining

• Evolve best practices & plan

• Steering

• Metrics Reviews

• Determine existing

technical and software

landscape

• Identify bottlenecks in flow of

value and create optimisation

roadmap

• Create reference

architectures and

implementation plan for SRE

• Metrics defined and prioritized

• Training strategy defined

• Training paths initiated

• Knowledge repository/

scaffolding consulted

• Hands-on coaching to

Teams

• Cross – pollinate learnings

• Adopt best practices

• Metrics baselined,

and measured

SRE Possible Implementation Pattern

SRE Product and Platform Team

SRE SRE SRE SRE

SRE

PRODUCT/S

• SREs are embedded within the product domains (Release Trains), and will develop deep knowledge

of the Product and it’s ecosystem.

• SREs drive Automation (illustrative but not exhaustive examples: CI/CD flows, infra as code,

operations automation, self-healing, cloud migration to improve reliability across the value

chain)

• SREs collaborate with other engineers, product owners, and business to drive automation and remove

toil, aligning with stakeholder roadmaps and priorities.

• SREs coach developers and product owners on SRE and DevOps practices to enable then deliver

business and IT objectives.

• SREs consume and contribute to the central Platform Products, to ensure the application service is

aligned with the company development and operational guidelines.

• SREs collaborate with other departments to ensure high reliability of business services, ensuring

early discovery of problems to reduce the cost of failure

• SREs implement application monitoring and observability, consuming the central platform product,

to ensure end to end telemetry

• SREs will participate with Product folks to define SLAs for business services

• SREs will translate SLAs to SLOs and SLIs and will ensure observability to measure SLI

• SREs will collaborate on Triage, RCA and blameless post-mortem towards incident resolution.

• SREs will ensure adequate capacity planning, optimisation

SRE

PRODUCTS

PLATFORM

SRE Possible Implementation Pattern

Build Stage participation

SREs enable Developers to consume Enterprise CI/CD pipelines, Observability and ensure full visibility of DevOps pipeline and activities

such as application deployments, continuous delivery, testing and correlated with data from tools such as Jenkins, JIRA, Confluence and

GitHub etc. to optimize Engineering and Operational Processes. They will strive to remove Toil across Product lifecycle

Build Stage Participation from Observability

Measure and optimize DevOps performance to maximize ROI

•Optimize software delivery with goal-based KPIs

•Support decisions with data-driven recommendations

•Identify trends and predict release risk

Examples

Code Coverage from

Sonar

Unit Tests passed from

Sonar

Code cyclo-

complexity and

vulnerabilities from

Sonar and Shiftleft.io/

Fortify

Number of Functional

Tests passed

Stress/Load Tests

passed

Build Success

Average

Average time of

Commit

Number for Commits

Rolled back

Run Stage Observability

SRE Execution
• SRE are coders. They know the toolset of the Product thoroughly.

• If coming from the Dev side, they are programmers who understand infrastructure, can shell script and write

interpreter code with ease. If coming from Ops side, they are the people who understand application design and

development.

• They ensure SLOs are set at correct boundaries of service, they define alerts to detect SLI thresholds

• They measure and report performance against the SLI –Availability (Up time, Error Ratio –5xx/Total

Requests) Performance (RPS, Latency)

• Their Operation load is capped at ~50 percent

• They enable developers on CI/CD automation, quality thresholds and deployment automation using infrastructure as

code

• They enable developers to understand how their applications are performing in production building observability, using

distributed tracing and APM tools

• They thoroughly understand deployment, fail-safe strategies - Rollback, Canary and Feature Flags.

• They influence in building fault-tolerant, autoscaling, cost efficient, highly performing design and architecture.

• SRE should ensure consumption of platform standards, should raise pull requests to enhance SRE Product/ Tool chain

features.

• SREs ensure consistency of tooling - All lower environments use consistent methodology and same tooling as used in

higher environments.

• SREs handle on-call events and do post mortems (For e.g. They are adept with Memory dump analysis, Thread dump

analysis, OS level diagnostics, Functional diagnostics)

• SRE ensures error budgets are followed, they ensure self-regulation of velocity and stability and ensure excess Ops

work overflows to the Dev team

#1 Rebranding Ops
• SRE is not about keeping the systems that have

already been built running at all costs.

• SREs build systems to require less human
intervention and to fail less often, and they modify
existing systems to remove emergent failure modes.
They do engineering work.

• Don’t bring Ops closer to machines, the key is to build
right alerts and have a distributed sharing and
collaboration from anywhere, so that just the
engineers who should actually be on call is alerted.

SRE Anti-Patterns 19

SREs spend more than half their time building better systems, rather than conducting or
documenting operational tasks

#2 Users notice an issue before you do

• The basic tenet is to turn your SLOs into
actionable alerts that are grounded on the
customer’s path

• Use key attributes (Precision, Recall, Detection
time, Reset time) to build alerting strategy

• Build solid fail-over, fault tolerance to resolve
within SLO

SRE Anti-Patterns 20

SREs are a direct contributor to getting the customer what they want: reliable,
performant access to the services that make their lives better

#3 Measuring until My Edge

SRE Anti-Patterns 21

Meeting your SLO is meaningless if customer does not have the experience

SLO is what is perceived by your customer/user,
not what your SLOs read

a.Interdependencies and integration with
outside partners overall matter

b.Shared institutions, Shared integrations,
Shared communications key to success

#4 False Positives are worse than No Alerts

SRE Anti-Patterns 22

Monitoring is about ensuring the steady flow of traffic, not a steady flow of alerts

• Do most of us operate this way? NOC
escalate outages to the SRE, who in turn
calls your Dev and Deployment Teams?

• Individual host alerts and False Positives
are worse than No alerts

• Response Fatigue and Information
overload of timeseries data is no good

• Alerts should have GREAT diagnostic
information

#5 Configuration Management trap

SRE Anti-patterns 23

• Traditional Infra (Snowflakes) are inefficient
from a operational management standpoint

• Even with a good configuration management
system, with 100s of services, a disaster is
waiting to happen

• SREs spend less time on changes and more on
homogenizing ecosystems

• Design for Immutability infrastructure - Pet
(snowflakes) vs. Cattle (VMs) vs. Poultry
(containers)

• Change is all about replacing, never updating
or patching

Use Configuration Management to consolidate and migrate to Immutable
Infrastructure

#6 The Dogpile: Mob incident response

• All hands on deck without an incident
command framework is disruptive to
engineering work, increases time to analyze
and resolve incidents

• A good procedural framework for handling
such situations is a mandate, that an SRE
can’t magically substitute

Minimize Damage. Make Outage as short as possible

SRE Anti-Patterns 24

#7 Point Fixing

• Minimize Outage with automated alerts and solid

paging mechanisms and quick workarounds, Fast

rollback, Fail over and Fix Forward

• However, analyze and eliminate Class of Design

Errors

• Short term fixes followed by Preventive long term

fixes leading to Predictive methods

• Auto Remediation and closed loop remediations

without human interventions should be the aim of

SREs

Reactive to Predictive to Auto Remediation

SRE Anti-patterns 25

Kaoru Ishikawa

#8 Human Error

• SREs strive not to have cause of an outage repeated. The desire to

prevent such recurrent failures is a very powerful incentive to

identify causes.

• The “root cause” is just the place where we decide we know

enough to stop analyzing and trying to learn more.

• Instead think of contributing factors, if we know what happened

and where things “went wrong,” , lets explore the system as a

whole and all the events and conditions leading up to the outage.

• Its never a human error, it’s a system problem – Jennifer Petoff,

Google

If a well-intentioned human can “break” it, it was already broken

SRE Anti-Patterns 26

27

THANK YOU!

Meet Me in the Network

Chat Lounge for Questions

Shivagami Gugan

