
Santanoo Bhattacharjee
Solutions Expert – DevSecOps & Hybrid Cloud | Accenture Advanced Tech Centers
DevOps Institute Ambassador

/NexGenOps

Get the basics aligned

• Why do we need to evolve?
• Are to even ready to evolve?
• How are we different in adopting

this?

The Outline

Visualizing the transformation

• What all do we need?
• Why do we need something new?
• How will the dots connect?

The Game Plan

• Refining the Metrices
• Mapping Capabilities
• Identifying the Velocity
• Scoping the lens of Release Roadmap

The Road Ahead

• Have we structurally aligned the goal
with the journey?

• Are we really disruptors or evolvers?
• What lies ahead…

The main goal is to create scalable and highly reliable software systems

• Why do we need to evolve?
• Are to even ready to evolve?
• How are we different in adopting this?Aligning the Basics

• Reduce Organizational Silos
• Implement gradual changes
• Leverage Automation
• Ecosystem of integrations
• Accept failure as normal

• Share Ownership
• Evolve by measurement
• Reduce toil, improve efficiency
• Evolving architecture
• Failure is good (if it is detected &

fixed)

DevOps Site Reliability Engineering

The Foundational Principles

Common Goal – Create a highly scalable & reliable ecosystem of delivering & maintaining software

Are you
aiming to

scale fast &
reliably?

Are we
implementing

changes,
frequently or
occasionally?

Are we
measuring

our delivered
software

behaviors?

Do we have a
short

feedback
loop? We aren’t that

agile! Do we
really need all

these?

We have a
dedicated
team of

experts, all
the time. Are

we good?

Scaling up is chaotic, it needs standardization, forming a process

A
cc

el
er

at
es

 D
el

iv
er

y Stab
ilizes D

elivery

• What all do we need?
• Why do we need something new?
• How will the dots connect?Visualizing the Need

Reduce Toil / Cost of Failure /
Shared Responsibility /

Automate / Managed Service
Alignment / Operation Driven

Development etc. etc.

Buzz Words / Abstract Definitions

"you built it, now you run it“

Key Point

You can put all your money to build the best app in the world, but if it is not up – it’s all in vain!

“build automation to reduce toil, increase observability, and improve reliability of the systems “

Your need of
Scale

Time to
Recover
(MTTR)

Change /
Release

Frequency

Measurement
of Needed
Metrices

Tooling
Landscape

Integration
Workflows &
Capabilities

Readiness for
Unanticipated

Controls

Proactive &
Self healing

Controls

Architectural
Clarity

The Outcome Analysis: Is the efficiency of your evaluation > 4

0.5

1

EFFICIENCY SCORING = [(Must + Need) / Total Coefficient]
= [(X + Y) / 6]

MUST

NEED

Revolutionary

Evolutionary

YES

NO

Ev
o

lv
ed

 f
ro

m
 D

el
ta

 4
 T

h
eo

ry
 b

y
K

u
n

al
 S

h
ah

, F
o

u
n

d
er

 @
 C

R
ED

• Refining the Metrices
• Mapping Capabilities
• Identifying the Velocity
• Scoping the lens of Release Roadmap

The Game Plan

“For any transformation, The whole contextual philosophy is different company to company”

The Value Stream

1. End – End Flow Mapping
2. Positioning your DevOps Ecosystem
3. Identifying Value Creation, Leakage & CSI
4. Positioning your SRE as a Capability

Patterns & Anti-Patterns

1. Islands of Automation
2. Tools are just enablers, accept that
3. Component level integration vs Service level integration
4. Clarity on workflows of products

Scoping through right lenses

1. Re-defining your SLI, SLO, SLAs
2. Error Budgets - Balancing innovation & stability
3. MTTR – “Quantitative Measurements”
4. Toil Factors – automatable, daily vs worthwhile
5. Make Reliability a Key Pillar

Observability as a Capability

1. Scoping The “Known Unknowns”
2. Data Channeling through Signal Synthesis
3. Tools promise a lot – Align it (system & human errors)
4. Simulate scenarios & build root cause channels
5. Structured Logs vs Metrices vs Traces

Collaboration is the key

1. Instead of WHO, lets focus on
WHAT is getting contributed

2. Divisional vs Central Setup
3. Focus on data driven feedback loop

1 2 3 4 5

• Have we structurally aligned the goal
with the journey?

• Are we really disruptors or evolvers?
• What lies ahead…

The Road Ahead

THROUGHPUT QUALITY LATENCY

AVAILABILITY DURABILITY CONSISTENCY

RELIABILITY

> 50 %

Time & effort of SREs should be channelized into
capability development such as enhancing

observability, predictive healing, automation etc.

> (Tech Stack) > (Complexity Cost)

While these technologies solve some problems, they create an
additional complexity cost. The developer would need to understand

all those technologies and services in addition to the core
technologies (e.g., languages) the application uses

Start Incentivizing. Both the SREs and developers
have a strong incentive to work together to minimize

the number of errors. Create a self-policing system
where developers get rewarded with more

teammates for writing better performing code

$Rewards$

“SLIs drive SLOs which inform SLAs”

Define SLA with Error Budgets with data backed
evidences, Have clear numerical indicators.

Note - If you’re trying to increase your SLO’s way too
much, you end to delaying your release to features “Do not emulate Google, They have a completely

different structural case of having SRE in the first
place. You will need to build reliability engineering

constructs to refine your needs!”

Food for Thought

Thank You

For all of us, the reliability engineers – a key question should

always be clear “We train & prepare ourselves for years just

to be ready to fight something which has the power to lead

to a chaos in minutes”.
The key lies in, “how much ready will we ever be!”

