® StackPulse

Using Automation for Generic
Mitigations in Production

May 20, 2021

Presenter: Leonid Belkind, Co-Founder & CTO, StackPulse

>

Ikind

Leonid BC

Agenda

e Generic Mitigations
o Automation: Playbooks-as-Code
e Bringing it all together...

e Samples
e Architecture Blueprint

e Main principles

® StackPulse

Typical timeline of an outage

DETECT INVESTIGATE MITIGATE FIX

Generic Root Cause Fix Deploy a
Mitigation Analysis Fix

Monitoring Enrichment .

—

4"&“2'_’[Alert / Hydration UitEge
/ "

Root Cause Ei Deploy a
) iX .
Analysis Fix

|

Reduction in outage time
Gain in SLO

& StackPulse |

So, what kind of Generic Mitigations do you have in mind?

* Rollback (Business Logic, Configuration, Data)

The ability to safely return to a working state. This might sound simple, rolling back a deployment
of a single component, but, actually, performing this in a multi-component environment, with
dependencies and evolving data schemas is not straight forward at all.

* Upsize / Downsize

The ability to increase / decrease amount of replicas of a certain component, while continuously
handling the production traffic. Ability to do that controlling the system externally without invoking
infrastructure and application specialists to perform dangerous changes in production.

* Drain and Flip Traffic

The ability to gradually drain the connections from a specific instance / site / cluster (experiencing
errors) and transfer them to another one. Doing so safely, without involving ad-hoc operations in
production.

& StackPulse |

s that it? Of course not

e Quarantine

After identifying a “bad” instance in a cluster, remove it from rotation ensuring that the other instances
continue handling traffic without impact on the users. Then, investigate the root cause of the problem.

* Block List

Block a specific user / account / session / external source of problematic requests to make sure that it
doesn’t impact the overall delivery of your service to the rest. Potentially, add specific quotas / guardrails
on this particular source rather than just blocking it.

* Disable a Noisy Neighbour

|dentify the source of “noisy neighbour” (for example, in a database, sending long queries that require too
much resources) and terminate the queries / sessions that impact others.

& StackPulse |

TL;DR

“Generic Mitigations” is a practice of improving SLOs and returning the
service to operational state faster, without compromising on Root Cause
Analysis and good software engineering practices.

Building Generic Mitigations and testing them (to build confidence to apply

them to production) is a very important aspect of becoming proficient in
building resilient systems.

® StackPulse

Playbooks —

Volume !

(a.k.a. Runbooks)

A playbook includes process workflows,
standard operating procedures, and
cultural values that shape a consistent
response — the play. S
accenture

Enable consistent and prompt responses
to failure scenarios by documenting the
investigation process in playbooks.
Playbooks are the predefined steps to
perform to identify and resolve an issue.

. NoNs
w¥amazon
W \ebservices™

$ StackPulse

Sample Playbooks

High (and similar) load on multiple hosts

® StackPulse

K8S PoD Restarting - Operational Runbook

the aperations requited fo

e alert sbout oduction anvironment

1. Understand the Cluster, Node, Namespace, PoD and Container data

Fiat you nieed to understand exacty what has restarted,in which namespace, rning cn which node n which Kubernetes chuster. Begn your ewestigation by locking 3t the

P

Ralevant information you should etrieve

m e lert
. Cante found in i the siertte. Can contan and
roduction?, fnf and staging (to 3 esser extentl

ively. We mostly care about events in production,

: Can be foundin i the st

de. Can contain ad W mostly care sbout restarts i e
Resiartz noule be reported to sutomation testing oaners.
. 14 1P address can be found n ek, This is 8 chuster member on which the festaried PoD was running. As our Kubermatas clusters run acrass & rumber of
Zonesiregens, it £ impartant 1o cok 3t 1w+ feld to understand the location of the specic nace.
g Can be found in fd
+ L -Canbefounginthe 1 field
@ Can b found inthe

Looking atthis nformation correcty can hep identfy the import

168 f the event. 1 the abowe exaemple, 1 & Kube:-S1ate-metics add-on that s being restarted, 1 has no
i Joss of observativty for & onger term,

imediate efect on out users, Dut can resus

Furtharmors, s very critial 1o understand if ws & a4l wih & inguiae (4S1art of & iven PaD vs & Crash Loop, Wilh crash 16096 & Tolowing aditons) et wil b fired
afer 8 numer o filed restart attsmpt:

O e

2. Pull the latest logs from the crashed cont:

er to understand the reason

The logs can bs pulled fram ourlogging console, bu, depending on which service was restarted,

21 Pulling logs from alog console

Ourlogs can be found at: hilps:liconso’e v 9000,

Sty o= stackiulse-praduction
Vou can ook forleg from spe

ntainer /PO by fitering:

2.2 Pulling logs directly from a Kubemetes Cluster

Using the nformation above connect via our breakol4ss 8ccess R1alogo)

A the folowing command

Veunsedto fitinthe and with the data ratriove
estarted oo, Plaase note that i case of the ¢

causad the sist you e looking at.

: rom the sirt. Thz Wil retreve the 50 Isst I of the loge of the previous contane (not the
4 100p happering, (i retievss logs from the lastrestarted containar, which s Aot necessarly gong 10 be the ane that

Opticnsily, you can retrieve ogs fram al contamersin the PeD using the folowing command:

19 1he logs plesse loak fo nas

524 10 the end of the Hecycla indicatng what caused the container 1 crashlexi. Paticulry ok fot the ofowing “patierns™
+ Atempt 10 cone

140 a0 external sarvice thet fais (socket | RPC [DNS /)

+ Recening s on sy . sent by Too

for avents as

+ Trying to parsa sattings fcanfiamap, rjected envicament varables) and falure 10 ntiize

To dentity crash loop ycu can pulthe st of Pos serted by a number of restarts:

Sample outout 0oks ke the beiow
Wnen itisvery 2 trom 3 o see if the resson foe restart i the same or aifferent

Playbooks — The essense

Playbooks provide (hopefully) step-by-step guides for human operators
to ensure repeatable and consistent response to incident situations.

D4 s tawr D

DUIL W my;
If we have repetitive technical step-by-step procedures, isn’t automation the
better option to ensure efficiency and consistency?

|

L
ntex

aybooks-as-Code

& StackPulse |

Google Research on Incid

Building Blocks

ver

Evaluating the Alert

Should | create an incident

Should | escalate to a more severe incident?
d | close as inactionable?

Is it loc al?

ating the Error
tharsa o

Q Determining if it's Me or
if it's My Dependency’s Issue

What are my problematic depe

Q Validating if my Service is Healthy
What are my SLC

Am | close to meeting or exceeding my SLOs?
Q Determining Change Around Me
push, experiment) that could correlate to th

O Mitigating the Issue

n should | tak

Q Vvalidating if my Service is Healthy

e mitig fix the Issu

Were there production chang ut, config/data

Q@

ent Response

User Journey

Recenve the
£ PagingTool @) RECEIVE PAGE
@ Tool @) VIEW ALERT OVERVIEW
@ MontorngDashboord €) LOOK AT CELL AND POINT WHERE INCIDENT OCCURED
@ JDashbond €] LOOK AT FAILURE ON GRAPH:LOOK AT ASSOCIATED
ERROR LOGS; LOOK AT PRODUCTION CHANGES
03 chat START CHAT
9 Emsi () SEND UPDATE EMAIL T ON-CALLERS
9 Emsil () SEND UPDATE EMAIL To STAKEHOLDERS
) MontorngDashbosd @) DETERMINE IMPACT BY REGION AND USER
o AssioN RoLES
Isolatethe error
@ Monitoing Dashbosrd () CHECK SERVER ERROR GRAPHS
@ Monitoring Dashbosrd () SLIDE TO FIND: CELL, ROLE, METHOD, AND USER
@ ontoringDashbowd @) VIEW ERROR % NUMBERS
@ MontoringDashbord (D) ‘SEE RAM SPIKE USAGE AND FSU DOWN ALONG EVENT
= LogAnalysisTool (D) DETERMINE CONTEXT THROUGH LOGS
[chat @) CONTINUOUS UPDATE ON DEBUGGING STATUS
@ MonitoringDashibord Q) GROUP BY FRAMEWORK ACTIONS
@ Monitoing Dashboard () CHECKTRAFFICTO CELLS
o @) LOOK AT SYSTEM MAP TO CHECK DEPENDENCIES
@ cReATE 0EBUG DOC TO TRACK INPACT
@ Monitoing Dashbosrd) CHECK FOR BROKEN CALLS TO DEPENDENCIES
Binci | @) CHECK FOR DEPENDENCY OUTAGES
B ncident Response Tool @) REVIEW OUTCOMES OF MICRO-SERVICE OUTAGES

Determine what changed on or around me:
Vaiidate my service health

§ @) VIEW PRODUCTION CHANGES IN 104 BINARY
Witgate the ssve
@ s1op waNuAL aueRY

Vaiidate my service health

(@ Montoring Dashbosrd) CHECK TRAFFIC IMPROVEMENT

Binci onse Tool @) UPDATE INCIDENT METADATA

@

& StackPulse

* From “Debugging Incidents in Google’s Distributed Systems, Charisma Chan and Beth Cooper, 2020

What are playbooks-as-code

Playbooks-as-code are deterministic manual operator instructions

converted into automation processes

[Chat START CHAT
& Email SEND UPDATE EMAIL TO ON-CALLERS
B ESCALATE TO A MAJOR INCIDENT
@ m) DETERMINE IMPACT BY REGION AND USER
@ ™) Dashboard 0 CHECK SERVER ERROR GRAPHS
@ m) Dashboard @ VIEW ERROR % NUMBERS
@ ™ jDashboard €J) VIEW PRODUCTION CHANGES IN ID'd BINARY

<> nmar

@ STOP MANUAL QUERY

& StackPulse

Automate Chat Channels, Notifications

Automate Messaging / Paging to Stakeholders

Automatically Update Incident Based on Enriched Data

Automate Pulling Impact Data from Logs/Context

Automate Diagnostics, Look for Suspicious Signals

Automate Log Queries, Calculate Data on Pulled Logs

Automatically Connect to SCM/CI Pipeline

Automate Remediative Actions / CLI / API / ...

Playbooks-as-Code = The Approach

® Similar to CI/CD Pipelines or Automated Tests, define playbook workflows as high-level
code/configuration

* Apply Software Engineering principles to Incident Response Playbooks
® Break down into modules
® Handle specific tasks, as a part of Incident handling
® Think of arguments / parameters and encapsulation allowing re-use
* Consider sharing between teams in the organization and between organizations
® Visualize / Troubleshoot / Audit execution
* Apply SDLC, GitOps, ...

®* Have a Playbooks-as-Code orchestrator separate from our application infrastructure

& StackPulse |

Playbook-as-Code Sample

<> Command Line Interface @ RETRIEVE DATA FROM VIRTUAL MACHINE

name: stackpulse/public/ssh/command

id: ssh_command

env
USERNAME: "{{ $.params.UserName }}”
HOSTNAME: "{{ $.params.ServerAddress }}”
COMMAND: df -k
PRIVATE_KEY: '{{ secret "SSH_KEY"}}’

[J chat PROVIDE INFORMATION TO RESPONDERS

name: stackpulse/public/slack/message
id: slack_send_message
env
MESSAGE_TEXT
The filesystems for server {{ $.params.ServerAddress }}

{{ $.ssh_command.output }}

RECIPIENTS: "alerts"

& StackPulse |

Typical Architecture for Playbooks-as-Code
Orchestration

7 I I

QQ Q@ O
QQ QQ O
QQ QQ Q

Communication / Collaboration
Systems

Production Monitoring Systems Playbook Orchestrator
Environments

& StackPulse

Summary

- Well-defined, pre-rehearsed and deterministic processes are a MUST to ensure efficient
handling of incidents

- A “library” of Generic Mitigations ensures ability to reduce outages

- “Documenting Step-by-Step Directions for Human Operators” is not the way to go. There
is a better alternative, as proven by:

Automated Testing
Automated Integration / Deployment
Infrastructure-as-Code

- Think of actions taking place during incidents / alerts just as of another aspect of “code”
and act accordingly

® StackPulse @‘

]

Thank
Youl!

Questions?
leonid@stackpulse.com

StackPulse

mailto:leonid@stackpulse.com

