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Typical timeline of an outage
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So, what kind of Generic Mitigations do you have in mind?

* Rollback (Business Logic, Configuration, Data)

The ability to safely return to a working state. This might sound simple, rolling back a deployment
of a single component, but, actually, performing this in a multi-component environment, with
dependencies and evolving data schemas is not straight forward at all.

* Upsize / Downsize

The ability to increase / decrease amount of replicas of a certain component, while continuously
handling the production traffic. Ability to do that controlling the system externally without invoking
infrastructure and application specialists to perform dangerous changes in production.

* Drain and Flip Traffic

The ability to gradually drain the connections from a specific instance / site / cluster (experiencing
errors) and transfer them to another one. Doing so safely, without involving ad-hoc operations in
production.
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s that it? ......... Of course not

e Quarantine

After identifying a “bad” instance in a cluster, remove it from rotation ensuring that the other instances
continue handling traffic without impact on the users. Then, investigate the root cause of the problem.

* Block List

Block a specific user / account / session / external source of problematic requests to make sure that it
doesn’t impact the overall delivery of your service to the rest. Potentially, add specific quotas / guardrails
on this particular source rather than just blocking it.

* Disable a Noisy Neighbour

|dentify the source of “noisy neighbour” (for example, in a database, sending long queries that require too
much resources) and terminate the queries / sessions that impact others.
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TL;DR

“Generic Mitigations” is a practice of improving SLOs and returning the
service to operational state faster, without compromising on Root Cause
Analysis and good software engineering practices.

Building Generic Mitigations and testing them (to build confidence to apply

them to production) is a very important aspect of becoming proficient in
building resilient systems.
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Playbooks —

Volume !

(a.k.a. Runbooks)

A playbook includes process workflows,
standard operating procedures, and
cultural values that shape a consistent
response — the play. S
accenture

Enable consistent and prompt responses
to failure scenarios by documenting the
investigation process in playbooks.
Playbooks are the predefined steps to
perform to identify and resolve an issue.
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Sample Playbooks

High (and similar) load on multiple hosts
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Playbooks — The essense

Playbooks provide (hopefully) step-by-step guides for human operators
to ensure repeatable and consistent response to incident situations.
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If we have repetitive technical step-by-step procedures, isn’t automation the
better option to ensure efficiency and consistency?
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What are playbooks-as-code

Playbooks-as-code are deterministic manual operator instructions

converted into automation processes
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Automate Chat Channels, Notifications

Automate Messaging / Paging to Stakeholders

Automatically Update Incident Based on Enriched Data

Automate Pulling Impact Data from Logs/Context

Automate Diagnostics, Look for Suspicious Signals

Automate Log Queries, Calculate Data on Pulled Logs

Automatically Connect to SCM/CI Pipeline

Automate Remediative Actions / CLI / API / ...




Playbooks-as-Code = The Approach

® Similar to CI/CD Pipelines or Automated Tests, define playbook workflows as high-level
code/configuration

* Apply Software Engineering principles to Incident Response Playbooks
® Break down into modules
® Handle specific tasks, as a part of Incident handling
® Think of arguments / parameters and encapsulation allowing re-use
* Consider sharing between teams in the organization and between organizations
® Visualize / Troubleshoot / Audit execution
* Apply SDLC, GitOps, ...

®* Have a Playbooks-as-Code orchestrator separate from our application infrastructure
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Playbook-as-Code Sample

<> Command Line Interface @ RETRIEVE DATA FROM VIRTUAL MACHINE

name: stackpulse/public/ssh/command

id: ssh_command

env
USERNAME: "{{ $.params.UserName }}”
HOSTNAME: "{{ $.params.ServerAddress }}”
COMMAND: df -k
PRIVATE_KEY: '{{ secret "SSH_KEY"}}’

[J chat PROVIDE INFORMATION TO RESPONDERS

name: stackpulse/public/slack/message
id: slack_send_message
env
MESSAGE_TEXT
The filesystems for server {{ $.params.ServerAddress }}

{{ $.ssh_command.output }}

RECIPIENTS: "alerts"
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Typical Architecture for Playbooks-as-Code
Orchestration
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Summary

- Well-defined, pre-rehearsed and deterministic processes are a MUST to ensure efficient
handling of incidents

- A “library” of Generic Mitigations ensures ability to reduce outages

- “Documenting Step-by-Step Directions for Human Operators” is not the way to go. There
is a better alternative, as proven by:

Automated Testing
Automated Integration / Deployment
Infrastructure-as-Code

- Think of actions taking place during incidents / alerts just as of another aspect of “code”
and act accordingly
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Thank
Youl!

Questions?
leonid@stackpulse.com
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