Observability Driven Development

@mipsytipsy
engineer/cotounder/CTO
https:// wif

Test-driven development TDD software development
Drocess
test cases

T.D.D. == 0.D.D.

https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Test_case

observabpility n

**observability is not monitoring, though both are forms of telemetry.

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)

o1l1ly software engineers:

asking questions

shipping new code

The Bar: It's not observability unless it meets these regs.

https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/
https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/

Why now?

Complexity is soaring;
the ratio of unknown-unknowns to
known-unknowns has tlipped

With a LAMP stack, you could lean on playbooks,
guesses, pattern-matching and monitoring tools.

observability,
or we are screwed

known-unknowns unknown-unknowns

oredictable

This is a prerequisite for software
engineers to own their code in production.

simple
feedback loops

putting your glasses on

observable

new no prior knowledge.

rich instrumentation

well-understood systems

never accept a pull request unless you can answer,
"how will I know when this breaks?” via your instrumentation

deploy one mergeset at a time. watch your code roll out,

"working as intended? anything else look weird?”

and always wrap code in feature flags.

tools+processes

t
OOB a”d evelopment (ODD)

Practice
ols anc DroCcesses.

“if you change the tools people use, you can change how they behave and even who they are,*

engineer merges dift. hours pass, multiple other engineers merge too
someone triggers a deploy with a few days worth of merges

the deploy fails, takes down the site, and pages on call

this eats up her day and multiple other engineers

everybody bitches about how on call sucks

engineer merges diff, which kicks off an automatic CI/CD and deploy
deploy tails; notities the engineer who merged, reverts to safety

who swiftly spots the error via his instrumentation

and promptly commits a fix

eng time to ship this change: 10 min

instrument, observe, and iterate
collective output

how they operate

core business differentiators.

look for ways to save time; ship smaller changesets more often
instrument, observe, measure before you act

connect output directly to the actor with context

instrument vigorously, boost negative signals

decouple deploys and releases

