
@mipsytipsy

✨Observability✨Driven Development

@mipsytipsy
engineer/cofounder/CTO

https://charity.wtf

T.D.D. + Production == O.D.D.

Test-driven development (TDD) is a software development
process that relies on the repetition of a very short development cycle:
requirements are turned into very specific test cases, then the code is

improved so that the tests pass

https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Test_case

observability(n):
“In control theory, observability is a measure of how well

internal states of a system can be inferred from knowledge of
its external outputs. The observability** and controllability of a

system are mathematical duals." — wikipedia

**observability is not monitoring, though both are forms of telemetry.

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Controllability
https://en.wikipedia.org/wiki/Duality_(mathematics)

Can you understand what’s happening inside your systems, just
by asking questions from the outside? Can you figure out what

transpired and identify any system state?

Can you answer any arbitrary new question …
without shipping new code?

o11y for software engineers:

The Bar: It’s not observability unless it meets these reqs.

For more — read https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/

• High cardinality. High dimensionality

• Composed of arbitrarily-wide structured events (!metrics,!
unstructured logs)

• Exploratory, open-ended investigation instead of dashboards

• Can visualize in waterfall trace by time if span_id fields are included

• No indexes, schemas, or predefined structure

• Bundles the full context of the request across service hops

• Aggregates only at compute/read time across raw events

https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/
https://www.honeycomb.io/blog/so-you-want-to-build-an-observability-tool/

• Ephemeral and dynamic

• Far-flung and loosely coupled

• Partitioned, sharded

• Distributed and replicated

• Containers, schedulers

• Service registries

• Polyglot persistence strategies

• Autoscaled, multiple failover

• Emergent behaviors

• ... etc

Complexity is soaring;
the ratio of unknown-unknowns to

known-unknowns has flipped

Why now?

With a LAMP stack, you could lean on playbooks,
guesses, pattern-matching and monitoring tools.

2003 2013

Now we have to instrument for observability.
or we are screwed

known-unknowns -> unknown-unknowns

Complexity is exploding everywhere,
but our tools were designed for a predictable world

Observability is the first step to high-performing teams because most
teams are flying in the dark and don’t even know it, and everything
gets so much easier once you can SEE.WHERE.YOU.ARE.GOING.

They are using logs (where you have to know what you’re looking for) or metrics (pre-aggregated and don’t
support high cardinality, so you can’t ask any detailed question or iterate/drill down on a question).

Without observability, your team must resort to
guessing, pattern-matching and arguments from
authority, and you will struggle to connect simple
feedback loops in a timely manner.

It’s like putting your glasses on before you drive
off down the highway.

Observability enables you to inspect cause and effect
at a granular level — at the level of functions, endpoints
and requests. This is a prerequisite for software
engineers to own their code in production.

You have an observable system
when your team can quickly and reliably diagnose

any new behavior with no prior knowledge.

observability begins with
rich instrumentation, putting you in

constant conversation with your code

well-understood systems require
minimal time spent firefighting

never accept a pull request unless you can answer,

“how will I know when this breaks?” via your instrumentation

deploy one mergeset at a time. watch your code roll out,

then look thru the lens of your instrumentation and ask:

“working as intended? anything else look weird?”

and always wrap code in feature flags.“O.D.D.”

tools+processes

Use your tools and processes to
improve your tools and processes.

“if you change the tools people use, you can change how they behave and even who they are.”

Practice Observability-Driven Development (ODD)

engineer merges diff. hours pass, multiple other engineers merge too

someone triggers a deploy with a few days worth of merges

the deploy fails, takes down the site, and pages on call

who manually rolls back, then begins git bisecting

this eats up her day and multiple other engineers

everybody bitches about how on call sucksinsidious
loop

50+ engineer-hours to ship this change

engineer merges diff, which kicks off an automatic CI/CD and deploy

deploy fails; notifies the engineer who merged, reverts to safety

who swiftly spots the error via his instrumentation

then adds tests & instrumentation to better detect it

and promptly commits a fix

eng time to ship this change: 10 min

virtuous
loop:

it doesn’t have to be that bad.

In order to spend more of your time on productive activities,
instrument, observe, and iterate on the tools and processes

that gather, validate and ship your collective output as a team.

Join teams that honor and value this work and are committed to
consistently improving how they operate — not just shipping features.

Look for teams that are humble and relentlessly focused
on investing in their core business differentiators.

look for ways to save time; ship smaller changesets more often

instrument, observe, measure before you act

connect output directly to the actor with context

shorten intervals between action and effect

instrument vigorously, boost negative signals

decouple deploys and releases
iterate and
optimize

"I don't have time to invest in observability right now. Maybe later”

You can't afford not to.

Charity Majors
@mipsytipsy

