
Optimizing CI/CD Pipelines with Shift-Left
Observability
Build Better Software Faster

Tom Fisher

Ability to bring new
application
functionality online in
real time

Bring new initiatives
on line quickly

Adjust rapidly to
changes in the
competitive landscape

Business

Agility
Responsiveness Cost EffectivenessScalability

Application Modernization
Why it’s Occurring and is Important

Immediately respond
to user concerns

Rapidly diagnose and
remediate complex
issues

Maintain SLI, SLO, and
SLA goals

Scale-up instantly as
application demand
peaks

Scale-down as
application demand
ebbs

Add and use resource
credits based upon
application scaling
requirements

Reduce or eliminate
application downtime
by applying
on-demand resources

3

The Evolution of Application
Architectures

● Monolithic

● 1948-1997

● SOA

● 1998-2011

● VMs
● 1972 – IBM

● 1999 – VMware

● Microservices
● 2011-

● Waterfall Design

● 1970

● Agile

● 2000

4

Why Application Architectures Evolved
● Mobile Internet

● Faster and more reliable backbone
networks

● Highly distributed services became
much more viable

● Compiled to JIT VM code

● Smalltalk ~ 80s

● First JVM – 1994

● Faster processors, multi-core,
denser storage, etc.

Mobile Network Average Speed Peak Speed
2G 0.1Mbps 0.3Mbps
3G 3Mbps 7.2Mbps
3G (HSPA+) 6Mbps 42Mbps
4G LTE 20Mbps 150Mbps
4G LTE Advanced 42Mbps 1Gbps
5G 500-700Mbps 10 or 20Gbps

5

The CI/CD Pipeline

CI/CD Tools
Enable automation and monitoring for
apps dev, integration and testing to
deployment

Enterprise
Observability

and the
CI/CD Pipeline

Discover and address 'unknown
unknowns’

 Issues you don't know exist

Catch and resolve issues early in
development

Automatically scale observability

Enable automated remediation and
self-diagnosing application
infrastructure

Observability’s Role in CI/CD
Pipeline Optimization

Shift-Left Observability
For Building Better Software Faster by

Optimizing Unit Test and Auto Test

And of Course, for Production

8

Optimizing the CI/CD Pipeline
● Unit Test Values

● Automated Profiling provides code level
details for triage

● Auto Test (and Production) Values
● Automation

● Discovers/maps apps, services, infrastructures, events, and dependencies

● Context
● Ingests all observability metrics, traces each request, profiles every process and

updates dependency maps in real time

● Intelligent Action
● Machine Learning Analytics for optimizing application performance

Fault
localization

Remediation
(NBA,

Runbook)

Apps in production
in distress

Clusters
(K8s or OC)

Transaction Replication
and Fault Injection

Monitoring

Apps in staging

Clusters
(K8s or OC)

Verify
localization
result

1 Localize fault

2

4

3 Test remediation action
in staging

Apply remediation action in prod

Enterprise Observability in the CI/CD Pipeline

● Leads to other possibilities

● Such as ML-based Fault
Injection for Software
Hardening in Test

Automation

Automatic Profiling
● Automatic and continuous

code level profiling

● JVM, PHP, NodeJS, etc. tracers

● Profiler Sensor from the
Agent

● Always on, but not profiling all
the time

Enterprise Observability Automation

Immediate
Automated tech stack discovery
3 secs for contextual understanding
Immediate situation info for DevOps

Exact
EVERY request is a Distributed Trace
Organize data into context
Automatic exact root cause for any issue

Effortless

Automatic:
- Metrics and traces collection
- Data storage and organization
- Analytics or dashboards building
- Code Profiling

Context Guide
Dynamic Graph for rapid
troubleshooting.

A “GPS” for enterprise
applications.

Dynamic Graph
Continuously updated, full stack, internal data model of application
structure and dependencies

Context

Application Dependency Maps

For Each Application

• Application service
dependencies

• Calls between services

• Application architecture layout
view

• Dashboards, flows, calls and
issues service views

Golden Signals for All Services
● Application Perspectives

● Latency
● Traffic
● Errors
● Saturation

Error and Log Messages

● Error messages

● Service errors that happen
during code execution

● Log Messages

● Collected from a log message
with severity WARN or higher

Intelligent Action

Machine Learning

● Signals Instana trains on
● Call Rate (sudden drops)
● Error Rate (sudden increase)
● Latency (sudden increase)

● Signals tracked from a variety
of sources
● Traces

● Endpoint, services, app
perspectives

● Metrics

Unbounded Analytics
Distributed Trace Analytics

Finds EVERY slow request
● Unbounded Analytics focuses on

● Distributed Traces

● Logs

● End User Monitoring

Smart Alerts

21

● Use Case Based Alerting
● Alert suggestions and

recommendations

● Performance, Availability,
Errors, Bugs

● Automated and manageable alerts

● Customizable Scenarios, Real
Time visualization, Seasonality

● Arbitrary filtering

● Scope limitations, Traffic
narrowing

Instana
is

Enterprise Observability

Build Better Software Faster

Instana Values for Key Stakeholders

23

● Developers

● Test new code functionality before committing

● DevOps
● Enable smooth CI/CD pipeline integration

● SREs
● Ensure pre and in-production reliability and availability

● Ops
● Continuously monitor and respond to potential problems and alerts

generated by Machine Learning and AIOps

Optimizing CI/CD Pipelines with Shift-Left
Observability
Build Better Software Faster

Tom Fisher

Thank You!

