
Creating an Observability
Strategy via Distributed
Tracing
Chinmay Gaikwad, Technical Evangelist

Twitter: @epsagon

Hello!

• Software Engineer, Applications
Engineer, Technical Marketing Engineer:
Intel, IBM, early stage startups

• Traveling, Soccer, Restaurants, Video
Games

What we’ll discuss today

• Microservices: The New Normal and New Challenges

• Troubleshooting Distributed Environments

• Building an Observability Strategy

Microservices: The New Normal
and New Challenges

Extremely hard to monitor and troubleshoot

The Rise of Microservices

Why Microservices?

Source: State of Serverless
Report 2020 - CodingSans

“Everything fails, all the time”
- Werner Vogels, AWS CTO

Customer-facing impacts (downtime, latency)
Decreased velocity of new feature releases

Lack of application insights & visibility into errors
Difficulty correlating data

Sampling, resulting in gaps
No visibility into payloads

New Paradigm, New Challenges

Troubleshooting Distributed
Applications

Observability: Overview

• Monitoring: Watch and understand the state of a system

• Observability: Measure internal state by knowing external outputs

• Monitoring and observability is one of a set of capabilities that
drive higher software delivery and organizational performance

• Who is monitoring and observability for? Everyone!
Source: DORA research

Combining metrics, logs, and traces
for observability is the only way to
understand complex environments

Metrics tell us the “what”

Logs tell us the “why”

Traces tell us the “where”

Achieving Observability in Microservices

● The service implements a simple virtual shop, where
users can send orders for items

● The HTTP server authenticates requests using Auth0
API (3rd party) and pushes them to a Kafka stream

● Another Java application polls the stream and updates
the orders on a DynamoDB table

● Both containers + Kafka stream runs on Kubernetes

● Users complain about orders that were sent but not
handled

Use Case for the Session

• Heavyweight, multiple agents

• Unable to pinpoint problem areas

• Alerts don’t have context

• No long-term benefits

Common Challenges in Most Solutions

Developer + Business Velocity

More metrics + logs screenshots

Kafka Metrics

DynamoDB Metrics

We need more debug data logs

Troubleshooting

Java Logs

Things missing?

• How do we correlate between metrics and logs?

• How do we correlate data between difference services?

• How do we find the where when something goes wrong?

Distributed Tracing

What is Distributed Tracing?

“A trace tells the story of a transaction or
workflow as it propagates through a
distributed system.”

Since distributed tracing connects every
request in a transaction, it allows you to
know and see what’s happening to every
service component and app in production

●

●

●

●

●

Benefits of Distributed Tracing

Visualize and Understand

Bring Focus to the Problems

• OpenTelemetry is a framework, not a service!

• Jaeger (Uber) and Zipkin (Twitter)

• Manual tracing requires heavy lifting: instrumentation and maintenance

• Lack visualizations, context, and tracing through middleware

OpenTelemetry Framework, Open-source Tooling

• every call (AWS-SDK, http,
postgres, Spring, Flask, Express, …)

• Create a for every request and
response

• Add to every span

• and IDs in relevant calls

Generating Traces with OpenTelemetry

• and minimal maintenance
(lightweight agent)

• Support
(containers, K8s, cloud, Serverless)

• Connects in a transaction
and helps see performance bottlenecks

• Search and your data and provide
context to alerts

• Helps to quickly problems by
isolating microservices responsible for
errors

Best Practices for Observability

Where Does Our Code Spend Time?

Business Insights

Errors, Categorized

Monitor with Trace-based Metrics and Alerts

The Journey to Observability

• Identify your business goals
and architecture model

• Determine your approach: DIY
or managed

• Implement observability
solutions

• Ensure scalability of
observability strategy

Summary

• Distributed applications bring unique benefits
and challenges

• Advantages of using Distributed Tracing
approach

• Observability is critical to:
■ Keep track of the architecture
■ Detect performance issues and reduce

MTTR
■ Reduce Ops, Dev and Opportunity costs

PROACTIVE

Thank you!

Want our Epsagon limited edition socks?

Visit https://epsagon.com/skilup-days/

for more information!

https://epsagon.com/?page_id=9561&preview=true

