SKILUPDAYS

DevOps Institute

ADVANCING THE HUMANS COF DEVOPS

Observability

A Socio- Engineering-Technology Problem
Name: Shivagami Gugan
DevOps Institute Ambassador
Head of SRE & Cloud
shivagamigugan@gmail.com

. Technology Transformation Leader, Aviation
Technologist, Head of Software Engineering
bootstrapped and built Software Architects and

Ag e n d q Engineers who deliver mission-critical software

. Led IT Digitisation, DevOps and Head of Site
Reliability engineering and Cloud at Emirates Group
IT

. DevOps Institute Ambassador and Middle East
Chapter member

A Practitioner’s view

Observability : Why is it a Socio - Engineering - Technology Problem?

SKILUP

DAYS

Shivagami Gugan

Key Takeaways

Why is Observability a BIGGER problem now ? What has changed?

Is Observability the missing link that will get you “the Zen of
Performance” ?

Why is Observability such a Socio-Technology issue?

SKILUP

DAYS

Performance Impacts the Business

1.9% conversion rate 1. Walmart found that for every 1

second improvement in page load

time, conversions increased by 2%

pnversion rate

2. Mobify found that each 100ms
onversion rate improvement in their homepage's
load time resulted ina 1.11%
increase in conversion

II.I-
SKILUP

DAYS

Performance in Complex Architectures

e Systems have become inherently very complex
e There is a whitespace in the area of “Integrated Visibility”

Distributedness .

SKILUP

DAYS

Monitor does not go away

e Business metrics
e Demand

e \Workload

o Fault/Errors

o Availability amazoncom

o Performance

e Resource metrics

Correctness, Speed and Consistency of a Hairball Architecture makes Monitoring OUTDATED for comple&
Systems

Logs, Events, Metrics and Tracing

Digital Business

Business Metrics View

— Checkout Abandonment
— Customer Churn
— Revenue per Location

Demand & Workload

RED Metrics View

— Request throughput
— Errors

— Duration (Latency,
Response time)

Traffic

Google’s Golden Signals

Context
Distributed Tracing
— Dependency on downstream

— Service Maps

— End-to-End Transaction
(hotspots, logic flaws)

Resources

USE Metrics View
— Utilization

— Saturation

— Errors

As applications become more
distributed, multiple
dependencies, and eph

BUILD BETTER'|
YOUR SYSTE

Perspective bias

Web-servers OK App OK
' Network OK Network OK
a
User
experience
@ ‘
Infra OK Rk OK

SKILUP

DAYS

Law of requisite variety

“If a system is to be stable, the number of states of its control mechanism must
be greater than or equal to the number of states in the system being controlled”

- W. Ross Ashby
What are the Varieties?
Version changes: deployed upgrades of service versions

Topological changes: new components that appear and disappear in the system landscape and
affect dependencies between existing running components.

Component property changes: changing labels and tags of components

SKILUp

DAYS

Observability of Complex Systems

Distnbutedness Transaction depth Metadata variance

1000+ nodes in a 1 million+ method State changes 100s of unique
single operation. calls in a single frequently alter the attributes distinguish
transaction. constraints the workloads

Cardinality and Dimensionality

e System workload is many-dimensional data, not just one-dimensional values over
time; and very high-cardinality.

e Traditional time series databases were designed with a system-centric worldview
and thus weren’t architected to store or query workload data. If Pre-aggregation
happens before storing data, there is a fundamental problem.

* Using traditional tools to measure, inspect, and troubleshoot customers’
experiences is basically impossible because of pre-aggregation and cardinality
limitations.

SKILUp

DAYS

Practitioner’s view of Observability

Complexity .
"kgfiffi“ ‘
] w®
Elasticity
oEDooog
ElEEETE
0CDOOCHODOO
0onooBooo
BE0E0

s nEEEEEREEEE
OOEhoOCNoCO0OODEoNEOONDOCOODODG
sessnziiiSsssassecsas
FRasECoEEEcEacEeER® Transience
fooooaa
DoooEnoan

If you miss the State changes, you will not
know which workload is being serviced by
which resource.

With Transience, with every spin up of
resources, entity changes with every state
change

Remember, Aggregation is the biggest
enemy that will “kill” variety, making the
information totally useless

Measure every element in the Request lifecycle

i Combined record for sources
of delay
\

N
._-/ ’\\?

e

Distributed Tracing

Microservice

Microservice

3. Overload
==
o

SKILUP

DAYS

1. Logic Error

Microservice

=

Microservice

2. Dependency Failure

Microservice

Microservice

Provides Context

Logs and Metrics will
not show the real
problem

Single request may
cause too many
downstream requests

Observability-driven development

e Dev and Ops war will go only one way, the Dev way

e Give Developers the privilege to “ You Build, You Run, You Monitor”

e Merge will happen only when proper Observability hooks are baked in the
code

e Never accept a PR until you learn the instrumentation

e Technology should enable distributed tracing, and tracing the breadcrumbs
built in the system

e This is making DevOps fuller -> Each developer needs to own their code, with
the ability to deploy it and debug it in production

The slowest constraint

v ——— ———————— - . - AL~

sjuaLNels aadied ppy

-

L L N “pilomssed abueyy
N

..V_::.....D Junod :.V Ew:._»an_ __.m.
sadA) uopoesues] jo sgoL - Bupjueg auljuo

—
- -~ II\I\I'
e LR N S RN W

sueo] awoH - | ddy - £801

Juawabeuepy yyeap - L ddy - L8O

R

—

Sg01 IV 0} sddy ||y — asudiajug [eqo|9

Do it like an SRE: Observability has to be at the
Service Level

Istio metrics in Stackdriver

= frontend
An open source adapter
sends Istio metrics (from
fosdgererster

anywhere) to Stackdriver.

o< ommendat e v e

MEXTON — AR A 2D

Logs + BigQuery = Ultimate power

Big Data/Big Analysis

Creating an export sink sends ppp— TP e R T

your logs to BigQuery, giving R e e] — s

you the same power of Dremel N o A i

that our SREs have.
[ey e - e ony rer KPP PO -]
o el ey " merer =, v 1 ey]
o oy - . Jong mer o P ei1Bvage |
o Rl " - -, U P By]
- et e s — :
o - - - . g ret mpresel Con L4IPIBRILage I
(1] R el - - v D L e]
[} o e - ang et en BetaPesiBesias [}
. T T :

MN=XTOIle

SLO Monitoring

. . evel Objective Defmition X ‘
Monitor like an SRE S
@ | Service Level Objective Definition x ‘
e Monitor customer-visible -
behavior el @] Service Lovel Objective Deftion
e Validate promises to user O @ mt @ s suvice Lovel Obpective Datinkion
@ o — @ reoos
e Error budget lets you @ wne
balance velocity vs. O o —
reliability ' @~
e Alert only when promises
are broken / on path to — @ el @ -
being broken Aeatchtny 973 n Mg 7 Oeps

XTOle

SLO Monitoring

Monitor like an SRE

e Monitor customer-visible
behavior

e Validate promises to user

e Error budget lets you
balance velocity vs.
reliability

e Alert only when promises

are broken / on path to
being broken

MN=XTOIle

Service level indicators =l 3
1 he interval (mean)
Error budget =) §
1 he inteeval (next older)
Service level objective compliance = Ll
1 e interval (next older)
100%
——
... ﬂ
80%

It's a Socio-Engineering-Technology problem

® Observability-driven-development (ODD)

® Incentivise the developer to capture everything

® Observability is the 15t step of the new world good coding practices

® Sl guided approach across multiple services

® Technology that will allow high Cardinality with little or no Aggregation
® Health checks, Logs, Metrics, Distributed, Request end to end tracing
® Not Manual/Toil — have a SRE approach

® ODD leads to true DevSecOps (for e.g. threat modelling)

® [eading to Autonomous Al

THANK YOU!

SKILUP

