
Observability in
Modern Applications:
Simplifying Complex Systems

Devon Lawler - Director of Sales Engineering @epsagon

About Me

•

•

What We’ll Discuss Today

• Old-School Monitoring Approaches

• Troubleshooting Pitfalls

• Observability in Distributed Environments

• In-House vs. Managed Solutions

Old-school Monitoring

• Distributed logs

• Collects only host data

• Collects only metrics

Troubleshooting

We need more debug data -> logs

Old-school Logging

• YaA (Yet another Agent)

• Expensive

• Collects only logged data

Distributed Logs Don’t Scale

Development Monitoring Troubleshooting

“I’m not sure
what’s currently

running in
production. How
can I build new

services?”

“Is my app working
properly?”

“Are basic logs and
metrics the right

tool for highly
distributed

applications?”

Challenges for Engineering and DevOps

The Three Pillars of Observability

Combining metrics, logs, and traces
for observability is the only way to
understand complex environments

Metrics tell us the “what”

Logs tell us the “why”

Traces tell us the “where”

● Manual Correlation

● Multiple Sources

● Single pane of glass

Something is Still Missing

The Rise of Microservices in the Cloud

Host-based
Distributed

Host-based
Monolithic

Abstracted-host
Highly Distributed

Extremely hard to monitor and troubleshoot

Traditional Monitoring Solutions are Limited

Logs & Metrics
are NOT Enough

Bytecode becomes a
bottleneck

Manual Monitoring
Kills Agility

● Traces are needed
on top of metrics and logs

● Distributed tracing is crucial
in order to find the
root-cause efficiently

● Bytecode provides limited
value in distributed
applications

● Bytecode comes with
significant overhead in
microservice environments

● Getting distributed
traces require manual
instrumentation

● Metrics, logs and traces
are correlated manually

Why Distributed Tracing Is Critical Today

A trace tells the story of
a transaction or workflow
as it propagates through a

distributed system

The Only Way to Understand Cloud-Native Workloads
Due to high complexity and the need for manual instrumentation, distributed
tracing remained an approach viable only for very tech savvy companies

Open-source Tools

Generating Traces Ingestion & Client

Best Practices for Observability

● Automated setup and zero
maintenance

● Supports any environment

(K8s, cloud, FaaS)

● Connects every request in a
transaction

● Searches and analyzes your data

● Helps to quickly pinpoint problems

● Correlation

Observability Benefits

• Reduction in Error Rates

• Reduction in Troubleshooting Time

• Faster Shipment of Features

• Improved DevOps & Engineering Efficiency

The Journey to Observability

• Identify your business goals and architecture model

• Determine your approach: DIY or managed

• Trial observability solutions

• Make sure the new service integrates to your

ecosystem

Summary
• Modern applications require more

than just monitoring

• Distributed tracing is a crucial
component in such environments

• Automation and Unification for
efficiency and ease

• Stop implementing your own
solutions unless needed

Special Offer for SkilUp Day: Observability

Visit https://epsagon.com/skilupday/

Start a free trial, send your first trace &
we’ll send you our Cloud Observability
Drone

1-in-10 will also receive a pair of Bose
Headphones!

https://epsagon.com/skilupday/

Thank you!

Meet me in the Network Chat Lounge
for Questions.

