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Agenda

« Context from a Different Angle

» Traditional Lean, Agile, DevOps
Values

« Kubernetes Paradigm

» Testability in Kubernetes

» Disposable Environments

* Non-Functional Testing

* Chaos Engineering
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Himanshu Patel

Digital Transformation Leader, DevOps Human
& DOI Ambassador

Digital Transformation Leader, Evangelist, Speaker,
and Passionate Technologist with a solid breadth and
depth, a firm believer in simplistic & sustainable design.
Leading Middleware Engineering and DevOps
Practices at Aventiv Technologies in Dallas, TX.




s N L

bing to Greenheugh Pedi




Ancient Oasis on Mars believed to be 3B Years old!
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EVOLVINGDEPLOYMENTS

App App App

Traditional Deployment Virtualized Deployment Container Deployment



Application Nexus
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File System

JDK / Java Runtime
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KUBERNETESARCHITECTURE
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TESTINGRESOURCES
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DEVOPS CI/CDAUTOMATION

Scale up & down
Desired Applications o

Setup End to End
K8S Environment

Automated Code/Config
Change Deployment in
K8S Cluster

Tear Down K8S

Environment °
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LOCALSETUP

® \What is it? ® \Why K8S Cluster on LOCAL?

e Docker * Multi Cluster Management
Kind (Kubectl CLI) All K8S Resources Supported
Docker Registry Local Docker Registry
K8Dash Control Plane CLI and Dashboard Access

Cl Server (Jenkins) Quick Setup & Teardown
SHIFTLEFT

TRYOUT https://github.com/navikco/




NON-FUNCTIONAL TESTING
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SECURITY TESTING
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Dynamic Scanning Non-Functional Tests

Publish Deploy

Rootless Validation

® Security Testing

* Rootless Containers

* Static Scanning
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DEALING WITH FAILURES

* |dentification, Experimentation,

( ® Failover Testing
NON-PROD .
LE NVIRONMENT Measurement & Remediation of

Failures
e |dentical Non-PROD & PROD

Environments
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CHAOSENGINEERING

Failures are given and everything will eventually fail over time
- CTO Amazon.com

Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production

Bad things will happen to your system, no matter how well designed It is.
You cannot become ignorant to it

Chaos doesn’t cause problems. It reveals them. CHAOS

- Netflix ENGINEERING
IS A PRACTICE TO
IMPROVE SYSTEM
RESILIENCY &
CONFIDENCE




CHAOSENGINEERING CYCLE

Action Plan Fix
Normal Behavior Define Scope, Metrics & Take the actions to fix
Identify & Understand Action Items for a Given the Reliability Gaps
Hypothesis
Build
. Measure
Hypothesis
10; 2 @ =
Stead Design .
y _g Remediate
State Experiment
. Learn
What if? Understand Time to Fail,
Think about possible Discovery, Self Healing or
Failure Scenarios Effort of Manual Intervention

to Restore from Chaos



FAILURE INJECTION

Common Failures

e Host Failure

e Block DNS

e Resource Attack
e Traffic Spikes

e Dependency Failure

What if?

Service returns 404, 5037
Latency Triples?
Port Inaccessible?

DB or External System
Unavailable?

Volume Increases Four-
Fold?

IP Tables Wiped out?

Time to Detect
Time to Notification

Time to Graceful
Shutdown

Time to Partial, Full Auto-
Heal or Recovery



e Several Commercial & OSS

CHAOSENG'NEER'NG TOOLS Options

e Should be Declarative, Extensible
& Automated

e Start Small & Build
Confidence

e Experiment across Levels,
You ChaosToolkit Drivers Your System * Application

e (Caching
aws
@  Database

S?;& * Network

CHAQOS ENGINEERING

Plugins AS PART OF
ae - Cl/CD
DELIVERY

PIPELINE



KUBERNETES TESTABILITY

Pod Validation AUTO MATE

O
® Rootless Container Validation N / F T E S T S
® Liveness & Readiness Probs U N D E R
® Disposable Environments
® |dentical Environments for C l /C D
PROD & QA DELIVERY
® Security Testing P | P E |_| N E
® CHAOSENGINEERING
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