SKILUP DAYS

INSTITUTE

Testability in the Paradigm
of Kubernetes

Essential aspects of Testing in the age of
Containers & Kubernetes
Himanshu Patel
Digital Transformation Leader
Aventiv Technologies
NavikHub

HRPatel2000@GMail.com

Agenda

« Context from a Different Angle

» Traditional Lean, Agile, DevOps
Values

« Kubernetes Paradigm

» Testability in Kubernetes

» Disposable Environments

* Non-Functional Testing

* Chaos Engineering

 Wrap up!

A

G HEUR:
A B R

DAYS

Himanshu Patel

Digital Transformation Leader, DevOps Human
& DOI Ambassador

Digital Transformation Leader, Evangelist, Speaker,
and Passionate Technologist with a solid breadth and
depth, a firm believer in simplistic & sustainable design.
Leading Middleware Engineering and DevOps
Practices at Aventiv Technologies in Dallas, TX.

s N L

bing to Greenheugh Pedi

Ancient Oasis on Mars believed to be 3B Years old!

TESTABILITY
IN THE

PARADIGM
OF CONTA

NERS

AND KUBE

RNETES

TO FIX DEFECTS

SHIFTLEF T

[)
° []
*eee® TIMESAVING

BES» COSTSAVING

4 SMOOTHRELEASES

NON-FUNCTIONALTESTING

ACCEE"EI'ENCE
UNIT TESTING
TESTING

SECURITY
TESTING
REGRESSION

TESTING

LOAD/STRESS
TESTING

SMOKE
TESTING

e
FAILOVER

TESTING

MAINTAINABILITY CONFIGURATION
TESTING y TESTING

FUNCTIONALTESTING ScaapuTy

TESTING

CONTINUOUS

X

Code Commit

L 0

Code Commit

DELIVERY
Build Acceptance Tests
Unit Tests Package
CONTINUQOUS
DEPLOYMENT
Build Acceptance Tests Publish e 2Ry
Unit Tests Package Non-Functional Tests

Build T CRATION
X 0 - B @ :

Code Commit Unit Tests

CONTINUOUS
DEPLOYMENT

Build Acceptance Tests Publish

L B B © B ® B o

Code Commit Unit Tests Package Non-Functional Tests

Build

@

CONTINUOUS
INTEGRATION

X 0 O

Code Commit

Build

Unit Tests

Acceptance Tests

CONTINUOUS
DELIVERY

X e

Code Commit

Unit Tests

Package

EVOLVINGDEPLOYMENTS

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Application Nexus

Repository

File System

JDK / Java Runtime

Application
L —
L —
) CE——
File System —
L —
L J
_ Nexus
Linux OS / Kernel Repository

JDK / Java Runtime

TRADITIONALDEPLOYMENT

Libraries & Packages

Linux OS / Kernel

CONTAINERIZEDDEPLOYMENT

SKILUp

DAYS

KUBERNETESARCHITECTURE

_
Namespace [©
Service — YAML
Persistent Volume

APl Server
(Pods, Services, .
Deployment
— Scheduler Controller Manager

Master

15

TESTINGRESOURCES

ﬂ TEST CASES / SCENARIOS

APPLICATION

. CONFIGURATION

@

i ENVIRONMENT

Service

Namespace - RED

Service

Namespace - BLUE

Service

Namespace - GREEN

DEVOPS CI/CDAUTOMATION

Scale up & down
Desired Applications o

Setup End to End
K8S Environment

Automated Code/Config
Change Deployment in
K8S Cluster

Tear Down K8S

Environment °

SHIFT

kubernetes

MicroK8s

%% minikube

. @ BANZAI cLOUD

Pod
I pre -
: Socat | Socat :
1 Port80 | Port443
kind : : :
N : | :
| |]
Kind Node E
Container : o i
! [ONN @
! £l £
. S | o
! c cC
! o ! O
| O O

%ocker J

LOCALSETUP

® \What is it? ® \Why K8S Cluster on LOCAL?

e Docker * Multi Cluster Management
Kind (Kubectl CLI) All K8S Resources Supported
Docker Registry Local Docker Registry
K8Dash Control Plane CLI and Dashboard Access

Cl Server (Jenkins) Quick Setup & Teardown
SHIFTLEFT

TRYOUT https://github.com/navikco/

NON-FUNCTIONAL TESTING

SECURITY
TESTING

LOAD/STRESS
TESTING

FAILOVER
TESTING

MAINTAINABILITY
TESTING

CONFIGURATION
TESTING

SCALABILITY
TESTING

o 43 @

Improved Security &
Reduced Risk

High Stability &
Site Reliability

Cost & Time
Savings

SECURITY TESTING

o —0—0—

Dynamic Scanning Non-Functional Tests

Publish Deploy

Rootless Validation

® Security Testing

* Rootless Containers

* Static Scanning
() e Composition Analysis
* Dynamic Scanning

, .
Bl / Uni Test ren festing

Pen Testing

SECURITY

AS PART OF
Cl/CD
DELIVERY
PIPELINE

DEALING WITH FAILURES

* |dentification, Experimentation,

(® Failover Testing
NON-PROD .
LE NVIRONMENT Measurement & Remediation of

Failures
e |dentical Non-PROD & PROD

Environments

NON-PROD
User

PROD

ENVIRONMENT EPHEMERAL
ENVIRONMENTS
BUILT WITH SAME
PRODUCTION
MANIFEST

F

PROD User

HA PROXY

CHAOSENGINEERING

Failures are given and everything will eventually fail over time
- CTO Amazon.com

Chaos Engineering is the discipline of experimenting on a distributed system in
order to build confidence in the system’s capability to withstand turbulent
conditions in production

Bad things will happen to your system, no matter how well designed It is.
You cannot become ignorant to it

Chaos doesn’t cause problems. It reveals them. CHAOS

- Netflix ENGINEERING
IS A PRACTICE TO
IMPROVE SYSTEM
RESILIENCY &
CONFIDENCE

CHAOSENGINEERING CYCLE

Action Plan Fix
Normal Behavior Define Scope, Metrics & Take the actions to fix
Identify & Understand Action Items for a Given the Reliability Gaps
Hypothesis
Build
. Measure
Hypothesis
10; 2 @ =
Stead Design .
y _g Remediate
State Experiment
. Learn
What if? Understand Time to Fail,
Think about possible Discovery, Self Healing or
Failure Scenarios Effort of Manual Intervention

to Restore from Chaos

FAILURE INJECTION

Common Failures

e Host Failure

e Block DNS

e Resource Attack
e Traffic Spikes

e Dependency Failure

What if?

Service returns 404, 5037
Latency Triples?
Port Inaccessible?

DB or External System
Unavailable?

Volume Increases Four-
Fold?

IP Tables Wiped out?

Time to Detect
Time to Notification

Time to Graceful
Shutdown

Time to Partial, Full Auto-
Heal or Recovery

e Several Commercial & OSS

CHAOSENG'NEER'NG TOOLS Options

e Should be Declarative, Extensible
& Automated

e Start Small & Build
Confidence

e Experiment across Levels,
You ChaosToolkit Drivers Your System * Application

e (Caching
aws
@ Database

S?;& * Network

CHAQOS ENGINEERING

Plugins AS PART OF
ae - Cl/CD
DELIVERY

PIPELINE

KUBERNETES TESTABILITY

Pod Validation AUTO MATE

O
® Rootless Container Validation N / F T E S T S
® Liveness & Readiness Probs U N D E R
® Disposable Environments
® |dentical Environments for C l /C D
PROD & QA DELIVERY
® Security Testing P | P E |_| N E
® CHAOSENGINEERING

THANK YOU!

SKILUpP

