
1

Building cross-site search

Supporting a continuous delivery
solution across six sites Chad Carlson

Technical Writer
Platform.sh
github.com/chadwcarlson
chad.carlson@platform.sh

22

Platform.sh

Search and the great docs migration

Cross-site search on public docs

Public docs + search CD

Extending to other sites

Technical writer
github.com/chadwcarlson

Chad Carlson

Writer, programmer, experimenter, ex-scientist.

3

Platform.sh
● Platform-as-a-Service = Infrastructure abstraction

○ Polyglot (9 languages)
○ Batteries included services (13)
○ Explicit config for your cluster (3+ YAMLs)

● Built for continuous deployment, tying
○ each branch to an environment
○ each commit to a deployment
○ External integrations to your projects

● Makes merges to production
○ depend on successful builds
○ depend on successful tests
○ depend on successful deployment

● Results in
○ More frequent deployments (experiment)
○ Deploy Friday! (same image)

● Find out more at docs.platform.sh

4

Platform.sh
● Platform-as-a-Service = Infrastructure abstraction

○ Polyglot (9 languages)
○ Batteries included services (13)
○ Explicit config for your cluster (3+ YAMLs)

● Built for continuous deployment, tying
○ each branch to an environment
○ each commit to a deployment
○ External integrations to your projects

● Makes merges to production
○ depend on successful builds
○ depend on successful tests
○ depend on successful deployment

● Results in
○ More frequent deployments (experiment)
○ Deploy Friday! (same image)

● Find out more at docs.platform.sh

5

Docs + search
● Previously used Gitbook

○ Node.js
○ Deprecated module ecosystem
○ Used Algolia plug-in for search

● Migrate to Hugo
○ Replicate Algolia?

● Meilisearch (Rust)
○ Executable search engine (multi-app)
○ Need to self-index docs (Hugo custom

outputs)
● Side effect: Cross-site search!

○ Could scrape our other sites during build
○ Format documents/pages for Meilisearch
○ Include in the final index

6

Docs + search
● Previously used Gitbook

○ Node.js
○ Deprecated module ecosystem
○ Used Algolia plug-in for search

● Migrate to Hugo
○ Replicate Algolia?

● Meilisearch (Rust)
○ Executable search engine (multi-app)
○ Need to self-index docs (Hugo custom

outputs)
● Side effect: Cross-site search!

○ Could scrape our other sites during build
○ Format documents/pages for Meilisearch
○ Include in the final index

7

Docs + search
● Previously used Gitbook

○ Node.js
○ Deprecated module ecosystem
○ Used Algolia plug-in for search

● Migrate to Hugo
○ Replicate Algolia?

● Meilisearch (Rust)
○ Executable search engine (multi-app)
○ Need to self-index docs (Hugo custom

outputs)
● Side effect: Cross-site search!

○ Could scrape our other sites during build
○ Format documents/pages for Meilisearch
○ Include in the final index

88

http://drive.google.com/file/d/1W5ZbntCgKDs8ThVxgrch8fsK7oEuLwtv/view

9

XSS CD on docs
● Each pull request triggers new environment creation
● Each commit = new deployment
● Limits on merges, dependent on successful deploy
● Builds/deploys themselves depend on:

○ Indexing for search engine
■ If scraper tests fail, deploy fails
■ If scrape fails, deploy fails
■ If self-index fails, deploy fails

○ Posting to Meilisearch
■ Invalid document format = failed

deploy
■ Unsuccessful POST = failed deploy

○ Hugo build
■ Fails if index did not create private

key
● All of these must pass to be able to merge

10

XSS CD on docs
● Each pull request triggers new environment creation
● Each commit = new deployment
● Limits on merges, dependent on successful deploy
● Builds/deploys themselves depend on:

○ Indexing for search engine
■ If scraper tests fail, deploy fails
■ If scrape fails, deploy fails
■ If self-index fails, deploy fails

○ Posting to Meilisearch
■ Invalid document format = failed

deploy
■ Unsuccessful POST = failed deploy

○ Hugo build
■ Fails if index did not create private

key
● All of these must pass to be able to merge

11

XSS CD on docs
● Each pull request triggers new environment creation
● Each commit = new deployment
● Limits on merges, dependent on successful deploy
● Builds/deploys themselves depend on:

○ Indexing for search engine
■ If scraper tests fail, deploy fails
■ If scrape fails, deploy fails
■ If self-index fails, deploy fails

○ Posting to Meilisearch
■ Invalid document format = failed

deploy
■ Unsuccessful POST = failed deploy

○ Hugo build
■ Fails if index did not create private

key
● All of these must pass to be able to merge

1212

13

XSS for all!
● Replicate the same model on each site
● Prioritize results for each with independent search

server (all become multi-apps)
● We need a way to make index updates easy, regular

○ Source operations
○ Daily cron tests + re-indexes all sites
○ Can be triggered manually via CLI/API

● Now we have
○ A fleet of sites that can synchronize
○ Contain daily updates for each
○ An endpoint created to trigger on all, for big

content launches (new language released;
EOL announcements, etc.)

○ Each with inbuilt tests where merging to
production is blocked if index generation,
index POST, or site build fail anywhere.

14

XSS for all!
● Replicate the same model on each site
● Prioritize results for each with independent search

server (all become multi-apps)
● We need a way to make index updates easy, regular

○ Source operations
○ Daily cron tests + re-indexes all sites
○ Can be triggered manually via CLI/API

● Now we have
○ A fleet of sites that can synchronize
○ Contain daily updates for each
○ An endpoint created to trigger on all, for big

content launches (new language released;
EOL announcements, etc.)

○ Each with inbuilt tests where merging to
production is blocked if index generation,
index POST, or site build fail anywhere.

1515

